Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biophotonics ; 16(2): e202200233, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054472

RESUMO

Stimulated emission depletion (STED) microscopy can break the optical diffraction barrier and provide subdiffraction resolution. According to the STED superresolution imaging principle, the resolution of STED is positively related to the power of the depletion laser. However, high-laser power largely limits the study of living cells or living bodies. Moreover, the high complexity and high cost of conventional pulsed STED microscopy limit the application of this technique. Therefore, this paper describes a simple continuous-wave STED (CW-STED) system constructed on a 45 × 60 cm breadboard and combined with digitally enhanced (DE) technology; low-power superresolution imaging is realized, which has the advantages of reducing system complexity and cost. The low-system complexity, low cost, and low-power superresolution imaging features of CW-STED have great potential to advance the application of STED microscopy in biological research.


Assuntos
Lasers , Luz , Microscopia de Fluorescência/métodos
2.
Opt Express ; 30(17): 30271-30278, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242134

RESUMO

We studied a novel volumetric single-photon excitation microscope with an ultralong anti-diffracting (UAD) beam as illumination. Volumetric fluorescence image direct mapping showed that the axial imaging range of the UAD beam was approximately 14 times and 2 times that of conventional Gaussian and Airy beams, respectively, while maintaining a narrow lateral width. We compared the imaging capabilities of the Gaussian, Airy, and UAD modes through a strongly scattering environment mixed with fluorescent microspheres and agarose gel. Thick samples were scanned layer by layer in the Gaussian, Airy, and UAD modes, and then the three-dimensional structural information was projected onto a two-dimensional image. Benefiting from the longer focal length of the UAD beam, a deeper axial projection was provided, and the volume imaging speed was vastly increased. To demonstrate the performances of the UAD microscope, we performed dynamic volumetric imaging on the cardiovascular system of zebrafish labeled with green fluorescent proteins in the three modes and dynamically monitored substance transport in zebrafish blood vessels. In addition, the symmetrical curve trajectory of the UAD beam and the axial depth of the lateral position can be used for localization of micro-objects.


Assuntos
Fótons , Peixe-Zebra , Animais , Proteínas de Fluorescência Verde , Microscopia/métodos , Sefarose
3.
Environ Sci Technol ; 56(17): 12563-12572, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35973135

RESUMO

Removal of irrecoverable foulants, which cannot be removed by conventional chemical cleaning, from end-of-life (EOL) membranes remains a substantial challenge due to the strong interaction between the foulants and membrane matrix. Herein, we developed a green solvent cleaning strategy based on Hansen solubility parameters to achieve the removal of irrecoverable foulants from the EOL polyvinylidene fluoride (PVDF) membranes serving for 6 years in a large-scale membrane bioreactor (MBR). We selected methyl-5-(dimethylamino)-2-methyl-5-oxopentanoate (MDMO) as the green solvent due to its strong interaction with the PVDF material, which might enable the substitution of binding sites of irrecoverable foulants. After the MDMO cleaning, the water permeance of the EOL membrane recovered from 47.6 ± 4.7 to 390.9 ± 8.2 L m-2 h-1 bar-1 (with a flux recovery ratio of ∼100%), with its rejection ability and stability maintained. The main components of irrecoverable fouling were humic acid-like substances revealed by spectroscopic characterization. Molecular dynamic simulation further elucidated the cleaning mechanisms: the strong interaction of MDMO-PVDF enabled substitution of binding sites of irrecoverable foulants by MDMO, followed by desorption of the irrecoverable foulants from PVDF and diffusion of the irrecoverable foulants into the bulk phase of MDMO. Evaluation in a lab-scale MBR treating real municipal wastewater verified the reusability of green solvent cleaned-EOL membranes. This study provides a novel, effective, and green cleaning strategy to remove irrecoverable foulants and prolong the service life of membranes in MBRs, facilitating sustainable wastewater treatment using membrane-based processes.


Assuntos
Membranas Artificiais , Purificação da Água , Reatores Biológicos , Solventes , Águas Residuárias/química , Purificação da Água/métodos
4.
Membranes (Basel) ; 10(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629838

RESUMO

Widespread applications of nanofiltration (NF) and reverse osmosis (RO)-based processes for water purification and desalination call for high-performance thin-film composite (TFC) membranes. In this work, a novel and facile modification method was proposed to fabricate high-performance thin-film composite nanofiltration membrane by introducing Ca2+ in the heat post-treatment. The introduction of Ca2+ induced in situ Ca2+-carboxyl intra-bridging, leading to the embedment of Ca2+ in the polyamide (PA) layer. This post modification enhanced the hydrophilicity and surface charge of NF membranes compared to the pristine membrane. More interestingly, the modified membrane had more nodules and exhibited rougher morphology. Such changes brought by the addition of Ca2+ enabled the significant increase of water permeability (increasing from 17.9 L·m-2·h-1·bar-1 to 29.8 L·m-2·h-1·bar-1) while maintaining a high selectivity (Na2SO4 rejection rate of 98.0%). Furthermore, the intra-bridging between calcium and carboxyl imparted the NF membranes with evident antifouling properties, exhibiting milder permeability decline of 4.2% (compared to 16.7% of NF-control) during filtration of sodium alginate solution. The results highlight the potential of using Ca2+-carboxyl intra-bridging post-treatment to fabricate high-performance TFC membranes for water purification and desalination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...